Deprecated: Required parameter $query follows optional parameter $post in /var/www/html/wp-content/plugins/elementor-extras/modules/breadcrumbs/widgets/breadcrumbs.php on line 1215
Pose Classifier (ML) - Blocks, Python Functions, Projects | PictoBlox Extension
[PictoBloxExtension]

Pose Classifier (ML)

Pose classifier icon
Extension Description
Create ML models to classify poses into different classes.

Introduction

Pose Classifier is the extension of the ML Environment is used for classifying different body poses into different classes.

The model works by analyzing your body position with the help of 17 data points.

Tutorial on using Image Classifier in Block Coding

Tutorial on using Image Classifier in Python Coding

Pose Classifier Workflow

Alert: The Machine Learning Environment for model creation is available in the only desktop version of PictoBlox for Windows, macOS, or Linux. It is not available in Web, Android, and iOS versions.

Follow the steps below:

  1. Open PictoBlox and create a new file.
  2. Select the coding environment as appropriate Coding Environment.
  3. Select the “Open ML Environment” option under the “Files” tab to access the ML Environment.
  4. You’ll be greeted with the following screen.
    Click on “Create New Project“.
  5. A window will open. Type in a project name of your choice and select the “Pose Classifier” extension. Click the “Create Project” button to open the Pose Classifier window.
  6. You shall see the Pose Classifier workflow with two classes already made for you. Your environment is all set. Now it’s time to upload the data.

Class in Pose Classifier

Class is the category in which the Machine Learning model classifies the poses. Similar poses are put in one class.

There are 2 things that you have to provide in a class:

  1. Class Name: It’s the name to which the class will be referred as.
  2. Pose Data: This data can either be taken from the webcam or by uploading from local storage.

Note: You can add more classes to the projects using the Add Class button.

Adding Data to Class

You can perform the following operations to manipulate the data into a class.

  1. Naming the Class: You can rename the class by clicking on the edit button.
  2. Adding Data to the Class: You can add the data using the Webcam or by Uploading the files from the local folder.
    1. Webcam:

      Note: You can edit the capture setting in the camera with the following. Hold to Record allows you to capture images with pose till the time button is pressed. Whereas when it is off you can set the start delay and duration of the sample collection.

      If you want to change your camera feed, you can do it from the webcam selector in the top right corner.

    2. Upload Files: You can also add bulk images from the local system.
    3. Upload Class from Folder: You can upload bulk classes with the images available in the appropriate folder structure. PictoBlox imports the class with the class name as the folder name and data from the image files inside the folder.  This is helpful if you have to import multiple classes.
  3. Deleting individual samples:
  4. Delete all samples:
  5. Enable or Disable Class: This option tells the model whether to consider the current class for the ML model or not. If disabled, the class will not appear in the ML model trained.
  6. Delete Class: This option deletes the full class.
Note: You must add at least 20 samples to each of your classes for your model to train. More samples will lead to better results.

Training the Model

After data is added, it’s fit to be used in model training. In order to do this, we have to train the model. By training the model, we extract meaningful information from the pose, and that in turn updates the weights. Once these weights are saved, we can use our model to make predictions on data previously unseen.

However, before training the model, there are a few hyperparameters that you should be aware of. Click on the “Advanced” tab to view them.

Note: These hyperparameters can affect the accuracy of your model to a great extent. Experiment with them to find what works best for your data.

There are three hyperparameters you can play along with here:

  1. Epochs– The total number of times your data will be fed through the training model. Therefore, in 10 epochs, the dataset will be fed through the training model 10 times. Increasing the number of epochs can often lead to better performance.
  2. Batch Size– The size of the set of samples that will be used in one step. For example, if you have 160 data samples in your dataset, and you have a batch size of 16, each epoch will be completed in 160/16=10 steps. You’ll rarely need to alter this hyperparameter.
  3. Learning Rate– It dictates the speed at which your model updates the weights after iterating through a step. Even small changes in this parameter can have a huge impact on the model performance. The usual range lies between 0.001 and 0.0001.
Note: Hover your mouse over the question mark next to the hyperparameters to see their description.

It’s a good idea to train a numeric classification model for a high number of epochs. The model can be trained in both JavaScript and Python. In order to choose between the two, click on the switch on top of the Training panel.

Alert: Dependencies must be downloaded to train the model in Python, JavaScript will be chosen by default.

The accuracy of the model should increase over time. The x-axis of the graph shows the epochs, and the y-axis represents the accuracy at the corresponding epoch. Remember, the higher the reading in the accuracy graph, the better the model. The x-axis of the graph shows the epochs, and the y-axis represents the corresponding accuracy. The range of the accuracy is 0 to 1.

Testing the Model

To test the model, simply enter the input values in the “Testing” panel and click on the “Predict” button.

The model will return the probability of the input belonging to the classes.

Export in Block Coding

Click on the “Export Model” button on the top right of the Testing box, and PictoBlox will load your model into the Block Coding Environment if you have opened the ML Environment in the Block Coding.

Export in Python Coding

Alert: For the model to work in Python Coding Environment the model is need to be trained in Python.

Click on the “Export Model” button on the top right of the Testing box, and PictoBlox will load your model into the Python Coding Environment if you have opened the ML Environment in Python Coding.

The following code appears in the Python Editor of the selected sprite.

####################imports####################
# Do not change

import numpy as np
import tensorflow as tf
import time

# Do not change
####################imports####################

#Following are the model and video capture configurations
# Do not change

model = tf.keras.models.load_model("num_model.h5",
                                   custom_objects=None,
                                   compile=True,
                                   options=None)
pose = Posenet()  # Initializing Posenet
pose.enablebox()  # Enabling video capture box
pose.video("on", 0)  # Taking video input
class_list = ['Goddess', 'Plank', 'Tree', 'Warrior']  # List of all the classes

# Do not change
###############################################

#This is the while loop block, computations happen here
# Do not change

while True:
  pose.analysecamera()  # Using Posenet to analyse pose
  coordinate_xy = []

  # for loop to iterate through 17 points of recognition
  for i in range(17):
    if (pose.x(i, 1) != "NULL" or pose.y(i, 1) != "NULL"):
      coordinate_xy.append(int(240 + float(pose.x(i, 1))))
      coordinate_xy.append(int(180 - float(pose.y(i, 1))))
    else:
      coordinate_xy.append(0)
      coordinate_xy.append(0)

  coordinate_xy_tensor = tf.expand_dims(
      coordinate_xy, 0)  # Expanding the dimension of the coordinate list
  predict = model.predict(
      coordinate_xy_tensor)  # Making an initial prediction using the model
  predict_index = np.argmax(predict[0],
                            axis=0)  # Generating index out of the prediction
  predicted_class = class_list[
      predict_index]  # Tallying the index with class list
  print(predicted_class)
Note: You can edit the code to add custom code according to your requirement.
Read More

PictoBlox Blocks

The block turns OFF the specified RGB LED of Quarky.
The function stops the specified motor of the Quarky.
The block initializes the ultrasonic sensor with specified echo and trig pins.
The block checks whether the selected class has been detected or not. If the class is detected, then the block returns true; else, false.
Scripts that wear this block will activate once the selected class is predicted either on the recognition window, stage or camera.
Scripts that wear this block will activate once the selected class is predicted either on the recognition window, stage or camera.
The block reports the mass of the sprite.
The block sets the threshold for the sensor connected to the selected pin. Threshold helps users decide whether the sensor is active or not. If the sensor value is greater than the threshold value, the sensor is active, or else it is inactive.
The block reports if the Wi-Fi is connected to the Quarky or ESP32 or not. This block is only available in Upload Mode.
The block sets the oscillator parameters for the selected servo motor.
The block resets the timer to 0.
The block sets the servo motors of the humanoid legs and hands to the specified angles at the specified speed.
The block sets the selected servo motor angle to the specified angle in the specified time. This creates a smooth motion for the servo motor from the current angle to the specified angle.
The block sets the pick or the place action angles to the specified value.
The block makes a request to ChatGPT to get all the nouns, pronouns, verbs, adverbs, adjectives, propositions, conjunction, and interjection from the text specified in it. The response of ChatGPT is then stored in PictoBlox and can be accessed using the get AI response block.
This block takes in a given value and converts it to either an integer or a float depending on the input.
The block writes the text and numbers on the 4×7 segment display.
This block is used to control an end-effector of the robotic arm to move in an arc.
This block sets motor speeds for Quarky’s line following, defining forward and turning speeds for tracking a black line on a white path.
Jumps the sprite up, a specified number of grid squares and then down again.
Changes the costume of the sprite as specified from the options.
Runs the blocks inside if a specified button is pressed of the quarky.
Runs the left motor of the wizbot in a specified direction.
Lights up the LED of the wizbot with specified color.
The block is used to draw an outline of the circle or a filled circle of a specified radius and center position on evive TFT display. It takes the center and the radius of the circle from the user and draws an outline of a circle.
The block sets the digital state of the specified digital pin to either “High” or “Low”. If the output is High, the pin will be at 5V and if the output is Low the pin will be at 0V.
Dabble inputs module have two tactile switches. This block reports the state of the tactile switch (pressed or not) in real-time. If the switch is pressed, then it returns true else false.
This block is to assign custom hand actions to our Humanoid Robot.
The block moves its sprite steadily to the specified X and Y position in the specified amount of seconds – this is like pointing the sprite in a direction and repeatedly using Move () Steps, but with more precision. A disadvantage of the glide block, however, is that it pauses the script while the sprite is moving, preventing the script from doing other things while the sprite is gliding.
The block changes its sprite’s size by the specified amount. The default sprite size is 100; size values below that percentage are for shrunken sprites, and size values above it are for overlarge sprites.
All articles loaded
No more articles to load

Block Coding Examples

There are no block coding examples for the extension to show.
Table of Contents