Deprecated: Required parameter $query follows optional parameter $post in /var/www/html/wp-content/plugins/elementor-extras/modules/breadcrumbs/widgets/breadcrumbs.php on line 1215
Program Your Quarky Mecanum Wheel Robot with PictoBlox
[Mecanum]

Programming the Mecanum Robot with Block Coding in PictoBlox

Description
Learn how to program your Quarky Mecanum Wheel Robot with PictoBlox. With the help of PictoBlox, you can control the robot to move, grip, and perform pick & place actions.

The Quarky Mecanum Wheel Robot is a type of robot that uses a special type of wheel to move. The wheel is made of four rollers mounted at 45-degree angles to the wheel‘s hub. Each roller has its own motor and can spin in either direction. This allows the wheel to move in any direction, making it an ideal choice for navigating around obstacles and tight spaces. The mecanum wheel robot can also turn on the spot, allowing it to make sharp turns without having to reverse direction.

The robot is programmable with PictoBlox. PictoBlox is coding education software that uses both graphical block-based coding and Python programming.

With PictoBlox, you can program the Mecanum Robot to move, grip, and perform pick & place actions!

If you haven’t installed PictoBlox, please follow the instructions:

Windows Installer (.exe)

STEP 1: Download the Pictoblox Installer (.exe) for Windows 7 and above (Release Notes).

STEP 2: Run the .exe file.

Some of the device gives the warning popup. You don’t have to worry, this software is harmless. Click on More info and then click on Run anyway.

STEP 3: Rest of the installation is straight forward, you can follow the popup and check on the option appropriate for your need.

 

Your software is now installed!

macOS Installer

STEP 1: Download the Pictoblox Installer (.dmg).

STEP 2: Run the .dmg file.

Mobile App Installer

STEP 1: Open Google Play Store on your Smartphone and and search for PictoBlox or visit the link here to head over to the Google Play Store. You can even scan the QR Code below from your Smartphone to head to the PictoBlox App.

STEP 2: Install the PictoBlox App.

Connecting Quarky with PictoBlox

Let’s begin by first connecting Quarky to PictoBlox. Select your preferred type of device i.e. either the desktop/laptop or your smartphone and follow the instructions.

Desktop

Follow the steps below for connecting Quarky to PictoBlox:

  1. First, connect Quarky to your laptop using a USB cable.
  2. Next, open PictoBlox on your desktop.
  3. After that, select Block as your coding environment.
  4. Then, click the Board button in the toolbar and select board as Quarky.
  5. Next, select the appropriate Serial port if the Quarky is connected via USB or the Bluetooth Port if you want to connect Quarky via Bluetooth and press Connect.
    COM Port
  6. Click on the Upload Firmware button. This will upload the latest firmware in Quarky.
    Note: If your device already has the latest firmware, then PictoBlox will show the message – Firmware is already updated. For learning more you can refer to this tutorial: https://ai.thestempedia.com/docs/quarky/quarky-toubleshooting/updating-quarky-firmaware-with-pictoblox/
  7. Once the firmware is uploaded, Quarky starts the Getting Started program. This runs only for the first time. Run through it.

And voila! Quarky is now connected to PictoBlox.

Mobile

Follow the steps below for connecting Quarky to PictoBlox:

  1. First, power ON Quarky.
  2. Open PictoBlox on your smartphone. Go to My Space and make a new project by clicking the ‘+(plus)’ button in the bottom-right corner.
    PictoBlox in Mobile Phone
  3. Then, tap the Board button in the top-right corner of the toolbar.
    PictoBlox BoardSelect board as Quarky.
  4. Next, tap the Connect button:
    PictoBlox ConnectSelect your device from the list.

And voila! Quarky is now connected to PictoBlox.

Quarky Mecanum Extension

The Quarky Mecanum extension in PictoBlox allows you to control the robot. It has blocks for specific applications. To add the Quarky Mecanum extension follow the instructions:

  1. Click on the Add Extension button and add the Quarky Mecanum extension.
  2. You can find the Quarky Mecanum blocks available in the project.

PictoBlox Blocks for Quarky Mecanum

The following blocks are available for the Quarky Mecanum:


Warning: Undefined array key "pp_wrapper_link" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/wrapper-link.php on line 194

Warning: Undefined array key "pp_wrapper_link_enable" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/wrapper-link.php on line 196

Warning: Undefined array key "pp_custom_cursor_icon" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/custom-cursor.php on line 350

Warning: Undefined array key "pp_custom_cursor_text" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/custom-cursor.php on line 351

Warning: Undefined array key "pp_custom_cursor_target" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/custom-cursor.php on line 352

Warning: Undefined array key "pp_custom_cursor_css_selector" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/custom-cursor.php on line 353

Warning: Undefined array key "pp_custom_cursor_enable" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/custom-cursor.php on line 355
This block is used to analyze the image received as input from the stage, the current backdrop, and the current costume, for the handwritten and printed text.
The function reports the last text detected from the speech.
The block returns the selected class name.
The block resets and clears the NLP model.
This block is used to set the threshold for the confidence (accuracy) of object detection, 0 being low confidence and 1 being high confidence. With the threshold value, you can set the level of confidence required for object detection.
The block changes the current voice used in Text to Speech.
This block analyses the image and saves the QR Code information locally, which can be accessed using other blocks. You have to run this block every time you want to analyze a new image from the camera.
The function returns the atmospheric pressure (on the sea level, if there is no sea_level or grnd_level data), in hPa of the location.
The block will play the specified note with the set instrument for the specified amount of beats.
The block turns the webcam on (directly or flipped) or off depending on the argument. 
The block will make its sprite continuously pen a trail wherever it moves until the Pen Up block is used. The color, size, and transparency of the trail can be changed with other blocks.
The block reads the analog value of the sensors connected to the specified pin. The block returns the int value between 0 to 4096.
The block displays the specified pattern on the Quarky RGB LED. These patterns are predefined in the code.
The block stops both the motors of the Quarky robot.
The block returns the state of the specified IR sensor. It returns True if the current IR sensor value is greater than the threshold value, else False.
The block stops the execution of the audio running on Quarky.
The block enables or disables the automatic display of the box on object detection on the stage. This is useful when you want to see if the object detection happens during the analysis or not.
This block analyses the image and saves the information locally, which can be accessed using other blocks.
The block sets the four servo motors of the legs to align with the specified orientation – inside, left, and right.
The block checks if the currently recognized class from the analyse numbers block is the selected class or not.
The block reports the recognized class from the recognition window.
The block set the sprite characteristics for the Physics Engine as free, fixed, or fixed but can rotate.
The block reports the state of the sensor connected to the selected pin. The block returns true when it is HIGH (or 3.3V) or false when it is LOW (or 0V). The block is used for digital sensors like PIR Sensor, Flame Sensor, or the IR Sensor.
The block sets the analog state of the specified pin to the specified value between 0 to 255.
The block creates a new feed or deletes an existing feed with the specified name.
The block triggers the event to send a webhook request.
The block performs the selected motion for the quadruped. The motion runs for the specified times and at the specified speed.
The block writes the dataset to the CSV file as a new row.
This block calibrates the angles of the hand servo motors and saves it in the memory of Quarky. Due to some mechanical assembly errors, there may be some misalignment of the servos which can be handled with this block.
The block makes the robot move in the specified direction with the specified speed for the specified time and then stop automatically.
All articles loaded
No more articles to load

Conclusion

In conclusion, the Quarky Mecanum Wheel Robot is a powerful and versatile robot that can be programmed using PictoBlox. With its Mecanum extension, it can be programmed to move in any direction, grip objects, and perform pick & place actions. With the help of PictoBlox, users can easily program the robot to perform their desired tasks.

Table of Contents