Deprecated: Required parameter $query follows optional parameter $post in /var/www/html/wp-content/plugins/elementor-extras/modules/breadcrumbs/widgets/breadcrumbs.php on line 1215
Program Your Quarky Mecanum Wheel Robot with PictoBlox
[Mecanum]

Programming the Mecanum Robot with Block Coding in PictoBlox

Description
Learn how to program your Quarky Mecanum Wheel Robot with PictoBlox. With the help of PictoBlox, you can control the robot to move, grip, and perform pick & place actions.

The Quarky Mecanum Wheel Robot is a type of robot that uses a special type of wheel to move. The wheel is made of four rollers mounted at 45-degree angles to the wheel‘s hub. Each roller has its own motor and can spin in either direction. This allows the wheel to move in any direction, making it an ideal choice for navigating around obstacles and tight spaces. The mecanum wheel robot can also turn on the spot, allowing it to make sharp turns without having to reverse direction.

The robot is programmable with PictoBlox. PictoBlox is coding education software that uses both graphical block-based coding and Python programming.

With PictoBlox, you can program the Mecanum Robot to move, grip, and perform pick & place actions!

If you haven’t installed PictoBlox, please follow the instructions:

Windows Installer (.exe)

STEP 1: Download the Pictoblox Installer (.exe) for Windows 7 and above (Release Notes).

STEP 2: Run the .exe file.

Some of the device gives the warning popup. You don’t have to worry, this software is harmless. Click on More info and then click on Run anyway.

STEP 3: Rest of the installation is straight forward, you can follow the popup and check on the option appropriate for your need.

 

Your software is now installed!

macOS Installer

STEP 1: Download the Pictoblox Installer (.dmg).

STEP 2: Run the .dmg file.

Mobile App Installer

STEP 1: Open Google Play Store on your Smartphone and and search for PictoBlox or visit the link here to head over to the Google Play Store. You can even scan the QR Code below from your Smartphone to head to the PictoBlox App.

STEP 2: Install the PictoBlox App.

Connecting Quarky with PictoBlox

Let’s begin by first connecting Quarky to PictoBlox. Select your preferred type of device i.e. either the desktop/laptop or your smartphone and follow the instructions.

Desktop

Follow the steps below for connecting Quarky to PictoBlox:

  1. First, connect Quarky to your laptop using a USB cable.
  2. Next, open PictoBlox on your desktop.
  3. After that, select Block as your coding environment.
  4. Then, click the Board button in the toolbar and select board as Quarky.
  5. Next, select the appropriate Serial port if the Quarky is connected via USB or the Bluetooth Port if you want to connect Quarky via Bluetooth and press Connect.
    COM Port
  6. Click on the Upload Firmware button. This will upload the latest firmware in Quarky.
    Note: If your device already has the latest firmware, then PictoBlox will show the message – Firmware is already updated. For learning more you can refer to this tutorial: https://ai.thestempedia.com/docs/quarky/quarky-toubleshooting/updating-quarky-firmaware-with-pictoblox/
  7. Once the firmware is uploaded, Quarky starts the Getting Started program. This runs only for the first time. Run through it.

And voila! Quarky is now connected to PictoBlox.

Mobile

Follow the steps below for connecting Quarky to PictoBlox:

  1. First, power ON Quarky.
  2. Open PictoBlox on your smartphone. Go to My Space and make a new project by clicking the ‘+(plus)’ button in the bottom-right corner.
    PictoBlox in Mobile Phone
  3. Then, tap the Board button in the top-right corner of the toolbar.
    PictoBlox BoardSelect board as Quarky.
  4. Next, tap the Connect button:
    PictoBlox ConnectSelect your device from the list.

And voila! Quarky is now connected to PictoBlox.

Quarky Mecanum Extension

The Quarky Mecanum extension in PictoBlox allows you to control the robot. It has blocks for specific applications. To add the Quarky Mecanum extension follow the instructions:

  1. Click on the Add Extension button and add the Quarky Mecanum extension.
  2. You can find the Quarky Mecanum blocks available in the project.

PictoBlox Blocks for Quarky Mecanum

The following blocks are available for the Quarky Mecanum:


Warning: Undefined array key "pp_wrapper_link" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/wrapper-link.php on line 194

Warning: Undefined array key "pp_wrapper_link_enable" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/wrapper-link.php on line 196

Warning: Undefined array key "pp_custom_cursor_icon" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/custom-cursor.php on line 350

Warning: Undefined array key "pp_custom_cursor_text" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/custom-cursor.php on line 351

Warning: Undefined array key "pp_custom_cursor_target" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/custom-cursor.php on line 352

Warning: Undefined array key "pp_custom_cursor_css_selector" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/custom-cursor.php on line 353

Warning: Undefined array key "pp_custom_cursor_enable" in /var/www/html/wp-content/plugins/powerpack-elements/extensions/custom-cursor.php on line 355
The block joins two Boolean blocks so they both have to be true to return true. If they are both true, the block returns true; if they are not all true or none true, it returns false.
The block hides the specified variable’s Stage monitor.
The recognize () in image from URL () block extracts the image from the specified URL, analyzes it, and saves information in PictoBlox.
The block analyses the image and saves the face information locally, which can be accessed using other blocks similar to computer vision.
This block is used to analyze the image received as input from the image URL specified, for the handwritten and printed text.
The block returns the current loaded model URL or the type (Image or Pose).
The function analyses the specified test and provides the class name under which it has been classified by the NLP model.
The block analyses the image and saves the face information locally, which can be accessed using other blocks.
The block returns whether the QR Code is detected in the analysis or not.
The function returns the humidity in % of the location.
The block sets the transparency of the video stream to a certain value.
If a sprite is currently using the pen because of the Pen Down block, the block will cause the sprite to stop drawing a trail. (Otherwise, it has no effect.)
The block sets the digital state of the specified pin to HIGH or LOW / 0V or 3.3V.
The block displays the specified text on the Quarky RGB LED. 
The block initializes the following line parameters for the Quarky robot – F. T1 and T2.
The block returns the IR sensor analog reading. The reading varies from 0 to 4095.
The block plays the tone on the speaker for the specified note and duration.
This block analyses the image and saves the information locally, which can be accessed using other blocks.
The block sets the servo connected to the PWM pin to the specified angle between 0 to 180.
This block is used to set the threshold for the confidence (accuracy) of object detection, 0 being low confidence and 1 being high confidence. With the threshold value, you can set the level of confidence required for object detection.
The block enables or disables the automatic display of the key points on the human pose on the stage. This is useful when you want to see if the detection is happening or not.
The block set the chassis servo motors to the specified angles.
The block enables or disables the automatic display of the key points on the human hand on the stage. This is useful when you want to see if the detection is happening or not.
The block reports the recognized class from the analyse numbers block.
The block reports the specified class confidence value of the selected class. 0 is low confidence and 1 is high confidence.
The block sets the sprite’s density, roughness, and bounce (restitution) to the defined values.
The block reports the temperature or humidity from the DHT sensor connected to the selected pin.
The block sets the specified motor of the Quarky Expansion board to the specified direction (“FORWARD” or “BACKWARD”) and specified speed.
The block sends the specified data to the selected feed as a number or as a string.
The block clears the values of the body.
All articles loaded
No more articles to load

Conclusion

In conclusion, the Quarky Mecanum Wheel Robot is a powerful and versatile robot that can be programmed using PictoBlox. With its Mecanum extension, it can be programmed to move in any direction, grip objects, and perform pick & place actions. With the help of PictoBlox, users can easily program the robot to perform their desired tasks.

Table of Contents